Global DNA Hypomethylation Prevents Consolidation of Differentiation Programs and Allows Reversion to the Embryonic Stem Cell State
نویسندگان
چکیده
DNA methylation patterns change dynamically during mammalian development and lineage specification, yet scarce information is available about how DNA methylation affects gene expression profiles upon differentiation. Here we determine genome-wide transcription profiles during undirected differentiation of severely hypomethylated (Dnmt1⁻/⁻) embryonic stem cells (ESCs) as well as ESCs completely devoid of DNA methylation (Dnmt1⁻/⁻;Dnmt3a⁻/⁻;Dnmt3b⁻/⁻ or TKO) and assay their potential to transit in and out of the ESC state. We find that the expression of only few genes mainly associated with germ line function and the X chromosome is affected in undifferentiated TKO ESCs. Upon initial differentiation as embryoid bodies (EBs) wild type, Dnmt1⁻/⁻ and TKO cells downregulate pluripotency associated genes and upregulate lineage specific genes, but their transcription profiles progressively diverge upon prolonged EB culture. While Oct4 protein levels are completely and homogeneously suppressed, transcription of Oct4 and Nanog is not completely silenced even at late stages in both Dnmt1⁻/⁻ and TKO EBs. Despite late wild type and Dnmt1⁻/⁻ EBs showing a much higher degree of concordant expression, after EB dissociation and replating under pluripotency promoting conditions both Dnmt1⁻/⁻ and TKO cells, but not wild type cells rapidly revert to expression profiles typical of undifferentiated ESCs. Thus, while DNA methylation seems not to be critical for initial activation of differentiation programs, it is crucial for permanent restriction of developmental fate during differentiation.
منابع مشابه
Nuclear Architecture and Epigenetics of Lineage Choice
Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...
متن کاملGenetic and Epigenetic landscape of Germline Stem Cells
Elucidating the critical epigenetics events involved in differentiation and reprogramming of cells to primordial germ cells (PGCs) is among the interesting issues in stem cell research. Here, I will talk about critical transcription factors and global hypomethylation in development of germ cells. Evidence strongly suggests that the earliest PGCs emerging in the E7.25 mouse embryo epiblast have...
متن کاملEvaluation of Changes in Global DNA Methylation during Osteoblastic Differentiation of Mesenchymal Stem Cells: A Laboratory Study
Background and Objectives: Control processes in osteoblastic differentiation of mesenchymal stem cells are not yet fully understood. Epigenetic mechanisms, especially the methylation of CpG Islands in the promoter of genes, are considered as one of the most important control mechanisms in stem cell differentiation. In the process of differentiation, it is debated whether only the methylation of...
متن کاملReprogramming the Methylome: Erasing Memory and Creating Diversity
The inheritance of epigenetic marks, in particular DNA methylation, provides a molecular memory that ensures faithful commitment to transcriptional programs during mammalian development. Epigenetic reprogramming results in global hypomethylation of the genome together with a profound loss of memory, which underlies naive pluripotency. Such global reprogramming occurs in primordial germ cells, e...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کامل